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The fundamental advantages of
temporal networks
A. Li,1,2 S. P. Cornelius,1,3 Y.-Y. Liu,3,4 L. Wang,2* A.-L. Barabási1,4,5,6*

Most networked systems of scientific interest are characterized by temporal links, meaning the
network’s structure changes over time. Link temporality has been shown to hinder many
dynamical processes, from information spreading to accessibility, bydisruptingnetworkpaths.
Considering the ubiquity of temporal networks in nature, we ask: Are there any advantages of the
networks’ temporality? We use an analytical framework to show that temporal networks can,
compared to their static counterparts, reach controllability faster,demandordersofmagnitude less
control energy, and have control trajectories, that are considerably more compact than those
characterizing static networks.Thus, temporality ensures a degree of flexibility that would be
unattainable in static networks, enhancing our ability to control them.

T
raditionally, network science has focused
on static networks, whose links offer per-
manent connections between their nodes.
Yet, it is increasingly recognized that most
natural and social systems are best described

as “temporal” networks, with links existing only
intermittently. For example, within metabolic net-
works (1), the links correspond to brief chemical
reactions; in social networks (2, 3), friendship
links are inferred from face-to-face or digital com-
munications of short duration. Such temporality
has profound effects on most dynamical processes
taking place on networks (4–7), slowing down
synchronization and the diffusion of innovative
information (4), impeding exploration and navi-
gation (7), and raising barriers to accessibility
(5). Similar limitations are expected for control—
the ability to drive a system with input signals to
any desired final state in finite time. Control is
essential for the operation of most real systems
(8–14), yet controllability normally requires the
existence of continuous paths capable of carrying
the input signals to the rest of the network (15–18).
Whereas in static networks such signal-carrying
paths are permanently available, in temporal
systems, complete instantaneous paths between
the inputs and the rest of the nodes are not guar-
anteed, potentially degrading our ability to con-
trol a system.
A temporal network is an ordered sequence

of m ¼ 1;⋯;M separate networks on the same
set of N nodes (Fig. 1, A and B), with each such
“snapshot” m characterized by a (weighted) ad-
jacency matrix Am for a duration Dtm. As we
aim to uncover the role of the changing network

topology, rather than the effect of specific dy-
namics, we consider that, in each snapshot, the
system is governed by the canonical linear time-
invariant dynamics

x
� ðtÞ ¼ AmxðtÞ þ BmumðtÞ ð1Þ

valid over the time interval t∈ ½tm�1; tm�1 þ DtmÞ,

where the tm�1 ¼
Xm�1

j¼1

Dtj is the “switching time”

between snapshotsm – 1 andm. We assume that
the system spends a finite amount of time in each
snapshot (1, 19), hence the Zeno phenomenon, or
infinitely fast switching, is unlikely to occur in
real temporal networks. The state vector xðtÞ ¼
½x1ðtÞ; x2ðtÞ;⋯; xN ðtÞ�T∈ℝN captures the state
of the whole system at time t, and xi(t) repre-
sents the state of node i, like the concentration
of metabolite i within a cell. The input matrix
Bm identifies the set of driver nodes through
which we attempt to control the system using
pð≤NÞindependent control inputs umðtÞ∈ℝp ,
like manipulating the input concentration of p
metabolites. To avoid conferring an unfair ad-
vantage to temporal networks, we use the same
set of driver nodes across all snapshots, i.e.,Bm =
B (Fig. 1C), and we assume that we have no con-
trol over the order of the snapshots nor over the
timings of the topology changes, hence our in-
fluence on the system is confined to the control
inputs (15–17, 20, 21). Consequently, in this work
we can regard temporal networks with dynam-
ics described by Eq. 1 as switched linear systems
(22) with specified switching sequences. If the
switching sequence depends on the state vector
x(t), the system can display strong nonlinear be-
havior, even if the dynamics (Eq. 1) within each
snapshot is linear (22).
To understand why temporal networks are

easier to control than static networks, consider
the static three-node network of Fig. 1D, which is
uncontrollable by any single driver node. Indeed,
we can show that for almost all values of the link
weights, we can only steer the static network
within a two-dimensional subspace of the three-
dimensional state space (Fig. 1D). Yet, we can

also show that the temporal version of the
same network—in which the two links are non-
simultaneously active—is controllable by the top
node (Fig. 1F). This is because although each
snapshot of the temporal network is by itself an
uncontrollable system, they contribute indepen-
dent two-dimensional controllable subspaces
(Fig. 1F), meaning that by combining the two,
we can reach any point within the full three-
dimensional state space. This renders the system
as a whole controllable.
Consider a system initially at x0 = 0. By con-

sidering all possible trajectories from the initial
time t0 = 0 to the final time tf = tM , we can write
the controllable space [see supplementary mate-
rials (SM) section S1.1] as

W ¼ hAM jBi þ
XM�1

m¼1

Ymþ1

j¼M

eAjDtj hAmjBi ð2Þ

Here, hAmjBi ¼
XN�1

i¼0

Ai
mRðBÞ denotes the con-

trollable space of snapshot m, where RðBÞ ¼
fBvjv∈ℝpg is the column space of B. Hence, a
temporal network of N nodes is controllable if
and only if

W ¼ ℝN ð3Þ
meaning that we can steer the system to an ar-
bitrary state of the state space ℝN in finite time.
For a static network, whose snapshots are iden-
tical (i.e., Am = A), Eq. 3 reduces to the classic
Kalman’s rank condition for controllability (8).
According to Eq. 2, the controllable space will

never shrink as the network structure changes,
allowing us to determine the minimum number
of snapshots St that must elapse before a tempo-
ral network becomes fully controllable. For com-
parison, we also calculate the minimum number
of snapshots Ss for the corresponding controllable
static network, which represents an aggregation
of a temporal sequence of snapshots (SM section
S4). Consider for example Fig. 1C, which shows a
temporal network with four snapshots, none of
which is individually controllable by using the
top node as the sole driver node. According to
Eq. 3, the temporal sequence becomes controlla-
ble at the second snapshot, i.e., St = 2 (Fig. 1F).
By contrast, we must aggregate Ss = 3 snapshots
to obtain a controllable static network (Fig. 1E).
The difference between Ss and St captures the
relative control benefits of a dense (but fixed)
network topology versus a relatively sparse (but
time-varying) topology, respectively. Although there
is no theoretical guarantee that St is always less
than Ss (fig. S1), as we show next, we find that
real temporal networks reach controllabilitymuch
faster than their static counterparts. Here “faster”
refers to the number of snapshots we need to
reach full controllability. Hence, the time to
control (embodied in St and Ss) is distinct from tf,
representing the time a system needs to reach its
final state (8, 15, 22–24).
To demonstrate the practical relevance of our

finding, we explore an empirical communica-
tion data set collected by the SocioPatterns
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collaboration, capturing face-to-face conversations
between the attendees of a conference (25); an
ecological network, capturing antenna-body in-
teractions between ants (26); a biological net-
work with time-varying protein-protein binding
interactions (27); and the real-time communica-
tion patterns observed in a technological network,
extracted from observed data-packet exchanges
within a mobile ad hoc network that emulates
the true stationary communication activity of
several mobile devices. For each data set, we con-
dense interactions into snapshots over successive
time windows of equal length Dt, a parameter
that offers a measure of temporality: For small
Dt, we obtain a large number of sparse, disjointed
snapshots, whereas for large Dt, we approach a
single snapshot corresponding to the full static
network (Fig. 1, A and B). In this view, each
snapshot represents the network structure over
the full aggregation window Dt for the purposes

of the dynamics (Eq. 1). Figure 2 shows St and Ss
for different timewindowsDt, indicating that the
number of snapshots required to control a tem-
poral network St is less than that required for its
static counterpart, Ss. The smaller the Dt, the
more pronounced the advantage of temporal
networks. For example, for the face-to-face inter-
actions at Dt = 103, the temporal networks reach
controllability after only 71 time steps (19.72 hours),
whereas we must aggregate 185 snapshots over
two days to obtain a static network that is con-
trollable. The difference between St and Ss is
significant in all systems, obtaining P < 0.001 for
face-to-face interactions, P < 0.05 for ants, P <
0.001 for the protein network, and P < 0.001 for
the technological network.
To determine to what extent these gains in

controllability depend on the topology of the un-
derlying snapshots, we calculate St and Ss for
randomized versions of the empirical data, using

null models that permute the overall network
structure, the relative time orderings of the edges,
or both (19). In all cases, we find that St < Ss (fig.
S8), indicating that the observed advantage is
independent of how the network changes in time.
We also find that with increasing numbers of
snapshots, temporal networks have more op-
portunities to reach full controllability than their
static counterparts (fig. S9), a finding further
validated by using a toy model that considers
random switching sequences (SM section S4).
Finally, we also explore whether the gains in
controllability depend on the timing of the in-
teractions between the nodes, specifically the in-
terevent characteristics. For this, we randomly
distribute time stamps for each interaction event
(fig. S7), erasing the inherent burstiness (periods
of intense activity separated by periods of rela-
tive quiescence) and other temporal correlations
from the data (28), while leaving the number of
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Fig. 1. Temporal versus static networks. (A) The sequence of contacts
among three nodes, capturing, for example, the connection patterns
between three individuals. We draw a line between two nodes if they
interact with each other during a 20 s interval. (B) The temporal
networks constructed from the contact sequence shown in (A) depend
on the length of the time window Dt over which we aggregate the
interactions. For short Dt, we obtain a large number of disconnected
networks (snapshots); for sufficiently large Dt, these collapse into a single
static network. (C) Four snapshots of a temporal network, constructed
from (A) for Dt = 40. According to Kalman’s rank condition (8), none of the
snapshots are individually controllable from the top node. Yet, Eq. 3
predicts that the temporal network becomes controllable after the second
snapshot. (D) A static network, obtained by aggregating the first two

snapshots in (C), is uncontrollable from the top node, as the controllable
space Ws is two dimensional. This is illustrated by the yellow region on
the right showing the set of all points xf that can be reached in finite
time from a given initial state 0 with an appropriate u(t). (E) We must
aggregate at least three (Ss = 3) for the corresponding static network
to become controllable. (F) The first two snapshots of a temporal network
(top) shown in (C) and the controllable space for each snapshot (bottom).
In this case, the temporal network becomes controllable after St = 2
snapshots. In other words, an appropriate signal acting on the green
node can send the system to an arbitrary point in the x1 – x2 plane; a
subsequent temporal signal acting on the blue node can take the system
to the desired x3 point in the space. Consequently, the controllable space of
the temporal network is the full cube in the bottom right corner.
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interactions involving each node unchanged
[(19), SM section S4]. We still find that St < Ss in
all cases (fig. S13), indicating that the observed
controllability gains are independent of the na-
ture of temporal signal. The combined results,
obtainedby using real and synthetic data, indicate
that temporality alone can considerably improve
controllability.
It is well established that sparse and/or hetero-

geneousnetworks—commonamongrealnetworks—
face barriers to control, requiringmanymore driver
nodes than dense or homogeneous networks. Our
results indicate that natural and human-built
systems can overcome this barrier by evolving or
being engineered to be temporal. For example, sys-
tems like theAssociation for ComputingMachinery
(ACM) conference and the technological network,
which show dramatic differences between Ss and
St, can be steered to a large number of states
within a short time window. Deviations from the
strong link we observe between temporality and
controllability are also informative. For instance,
the slower growth of the controllable space and
correspondingly modest gains in global control-
lability for the temporal ant-to-ant and protein-
protein networks imply that the topology of these
systems changes in ways that tend to revisit pre-
vious network structures and dynamics. As such,
temporality, though present, offers less flexibil-
ity andmay point to the importance of partial or
“target” control in these systems (29). Taken to-
gether, we may be able to use the difference be-
tween Ss and St as a measure of the flexibility
offered by temporality for a given system.
Our ability to control a system is determined

not only by the time it takes to reach controlla-
bility but also by the amount of effort (energy)
required to reach a particular final state. We
develop a formalism to calculate the minimum

input energy 1
2 ∫

tf

t0
uTðtÞuðtÞdt required to drive a

temporal network from an initial state x0 to
final state xf. For systems following (Eq. 1), we
have (SM section S5)

Eðx0; xfÞ ¼ 1

2
dTW�1

effd ð4Þ

where d is the difference vector between the
desired final state xf and the natural final state
that the system reaches without control inputs,
and the N × N matrix Weff encodes the energy
structure of the temporal network. For identical
snapshots, Weff reduces to the controllability
matrix and Eq. 4 provides the control energy of a
static network (SM, section S5.4). Computing
Weff scales in time as OðMN4NdÞ, where Nd is
the number of driver nodes, and involves OðMÞ
nearly noninvertible matrices, with orders-of-
magnitude differences in their elements. Hence,
the limiting factor in calculating (Eq. 4) are the
number of nodes and snapshots, not the num-
ber of interactions. This places high demands
on numerical precision and renders the control
energy calculation challenging for large net-
works. We can, however, numerically determine
the energy for the technological system (N = 34,
M = 2), but not for the next larger system, the
protein-interaction network (N = 74,M = 33).We
therefore calculate the minimum control energy
E for small synthetic networks and test the im-
plications of our results in real systems using the
technological network.
Figure 3 compares the control energy (Eq. 4)

of a synthetic temporal network and the techno-
logical network with that of their static counter-
parts as a function of Dt. We find that the average
control energy of a temporal network is many
orders of magnitude smaller than that of the
corresponding static network, particularly in the
highly temporal regime (with very small Dt). In-
deed, forDt = 10–6, the energy difference between
the static and temporal network exceeds 130

orders of magnitude (Fig. 3A). In other words,
high temporality, corresponding to rapid changes
in the network topology, offers remarkable en-
ergy savings. Applying this to a real system, we
find that the energy required to control the tech-
nological network of Fig. 2D decreases by 274
orders of magnitude when the true temporal
nature of the network is taken into account
(Fig. 3B). In both temporal and static networks,
we can reduce the control energy by usingmore
driver nodes (24) (fig. S15). Yet the gap between
the temporal and static network persists until
all nodes are directly controlled (fig. S15). Finally,
a direct comparison of the control energy distri-
butions for static versus temporal networks re-
veals only a small overlap in certain regimes (Fig. 3,
insets). This indicates that the worst-case control
direction in a temporal network is often better
than the best-case control direction in its static
counterpart.
In some systems, from social systems to biolog-

ical ones, a full comparison of the control cost of
temporal and static networks might require us to
consider the costs necessary to switch the network
structure in temporal networks, or conversely, the
potential costs of maintaining the network struc-
ture in static networks. For example, it would
take exceptional effort to force a regulatory net-
work not to change in time. Lacking measure-
ments and models to estimate these costs, we
have neglected them here. Yet, given the truly
exceptional control cost differences between static
and temporal networks (Fig. 3), wenote that these
coordination costs would need to differ in many
orders of magnitude to alter our fundamental
conclusion that temporal networks typically
require less control energy.
The extreme energy savings characterizing tem-

poral networks arise because of the orders-of-
magnitude difference in the energy required to
move in different directions in the state space
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Fig. 2. Faster paths to controllability in temporal networks.Time
needed to control four kinds of temporal networks: (A) 20,818 face-to-face
interactions between the attendees of an ACM hypertext conference with
113 participants, recorded over 2.5 days in 2009 (25); (B) 1911 antenna-
body interactions between 89 ants over 1438 s (26); (C) dynamic protein-
protein interactions in the yeast Saccharomyces cerevisiae annotated by
the three domains of gene ontology—cellular component (CC), molecular
function (MF), and biological process (BP). The data consist of 22,570
protein-protein interactions between 84, 74, and 85 nodes, recorded within
33, 50, and 50 snapshots, respectively (SM section S2) (27); (D) data
packet exchanges in an emulated mobile ad hoc network, capturing 304,
383, and 3287 interactions between 34 nodes (mobile devices) occurring

over 50 snapshots each from three simulations, 1-ip6, 2-ip6, and 3-ip6
(SM section S2). For each time window Dt, St is the minimum number of
snapshots required to achieve full control of a temporal network, and Ss is
the minimum number of snapshots we must aggregate to obtain a
controllable static network. We find that St < Ss for any Dt, both for the
original sequence of snapshots and when the sequence of interactions
is randomized, meaning that the result is not an artifact of the original
data (see SM sections S3 and S4). For the significance test, we obtain
***P < 0.001 and **P < 0.05; Student’s t test. The weight of each link is set
randomly between 0 and 1. The number of driver nodes is fixed to 20%
of the network size, and each point represents an average over 103 realizations
of link weights on the same network structure (temporal or static).
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(24). In a static network, if we must travel in an
energetically costly direction, we have no choice
but to spend the required energy to “push” against
the system’s dynamics. By contrast, in a temporal
network, we can exploit the changing topology to
avoid these expensive directions. Much like navi-

gating a sailboat, it is easier to travel in a partic-
ular direction if we exploit the shifts in the wind
direction (the vector field of the network dynam-
ics): We raise the sails when the wind helps us
and pull them back when it works against us. In
other words, we only push toward the desired

final state when the topology renders the energy
cost acceptable, and pause when the topology
makes the cost prohibitive.
The orders-of-magnitude decrease in control

energy induced by temporality has implications
for natural and human-built systems alike. Our
calculations (Fig. 3) show that the key determi-
nant of a temporal system’s energy advantage is
the parameter Dt representing how long each
snapshot is active. Systems in which the net-
work’s structure evolves rapidly (relative to its
intrinsic dynamics) can have huge savings in
terms of the effort needed to control them. By
contrast, if the network’s structure evolves slowly
relative to its dynamics, then static and temporal
networks require comparable control energy. In-
deed, as shown in Fig. 3, for small Dt, temporal
networks display a decided energy advantage; by
contrast, for large Dt, the energy advantage of
temporal networks is not obvious. The exact Dt
value at which transition occurs depends on the
number of driver nodes (Nd), as well as the de-
tails of the network’s structure such as its aver-
age degree and link strengths.
Real systems often obey constraints that forbid

the states of thenodes from taking arbitrary values.
For instance, the generator frequencies in thepower
grid can only vary within a narrow range around
their normal operating point, without inducing
failures, and metabolite concentrations (1) within
a cell must always be nonnegative. These limi-
tationsmean that the control trajectories cannot
wander arbitrarily far into the state space but
must exhibit a high degree of locality (23).
To test the degree of locality in temporal net-

works, we calculate the length of each control

trajectory usingL ¼ ∫
tf

t0
‖x� ðtÞ‖dt, where the energy-

optimal trajectory for temporal networks as they
move from x0 to xf follows

xðtÞ ¼ eAmðt�tm�1Þxðtm�1Þ þWm½tm�1; t�c�m
for t∈ ½tm�1; tm�1 þ tmÞ, whereWm½tm�1; t� is the
matrix corresponding to the snapshotm and c�m
is a constant vector of dimension N (SM section
S9). In general, L depends on the initial state x0
and the state-space distance d ¼ ‖xf � x0‖ be-
tween the origin and destination points (Fig. 4, A
and B). For x0 = 0, in both static and temporal
networks, L increases linearly with d (Fig. 4B).
Yet for any d, the optimal control trajectories in
temporal networks are about five orders of mag-
nitude shorter than trajectories in their static
counterparts (Fig. 4B). The difference is particu-
larly notable in real systems: For the technolog-
ical network, the temporal trajectory is 29 orders
ofmagnitude shorter than the trajectory for the
corresponding static network (Fig. 4C). Indeed,
it is known that, in static networks, L can be
large even when d approaches zero, implying
static control generally demands highly nonlocal
control trajectories (23). By contrast, we find that
the dynamical flexibility offered by temporality
allows x(t) not to have to wander far into phase
space as it moves from x0 to xf. The sailing
analogy helps us once again to understand this

Li et al., Science 358, 1042–1046 (2017) 24 November 2017 4 of 5

x
1
(t )

x
2
(t

)

10-7 10-3 101 105
10-3

102

107

1012

Temporal
Static

L
x i(

t)

t
0 0.2 0.4 0.6 0.8 1

-1080

-1040

0

1040

1080

-0.01 -0.005 0 0.005

-12

-8

-4

0

4

6

10-4x

Fig. 4. Temporal networks exhibit more local trajectories. (A) Three trajectories (triangle, circle,
and square) for static (blue lines) and temporal (red lines) networks starting from x0 = 0,
controlled to reach ‖xf‖ = 10–3 after a unit time with a1 = –10 and a2 = 2. (B) The length of the
control trajectory L as a function of control distance d ¼ ‖xf � x0‖. L is always much smaller for the
temporal networks than for their static counterparts, regardless of the control distance (see SM
section S9). Each point represents an average over 104 final states; we choose N = 10, M = 5. See SM
section S9 for other parameters. (C) For the technological network, we track the evolution of x1(t)

(corresponding to the maximum length of all state components) from x1ð0Þ ¼ 0 to x1ð1Þ ¼ 1=
ffiffiffiffiffiffi
34

p
,

finding that L is in the order of 1035 for the temporal network, in contrast with 1064 for the
corresponding static network (see SM section S9 for more details).
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nodes is 0.1, and increasing the number of driver
nodes reduces the necessary control energy both
for temporal and static networks, yet temporal
networks continue to require less energy (see fig.
S15 for the case ofmore driver nodes). Insets show
the distribution of minimal energy for two specific
Dt. The small overlap between temporal and static
networks indicates that temporal networks are
energetically preferable and that this is largely
independent of the control direction (fig. S15). Here,
a1 = –3, a2 = –1, N = 20. a1 and a2 are self-loop
weights chosen to stabilize the standalone
dynamics of each snapshot, and the average
degree within each snapshot is 6 (see SM section
S8 for details). (B) The distribution of E with one
driver node for the technological network with Dt =
10–6 (see fig. S15 for more details).
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difference: Travel against the prevailing wind is
possible, but we must use complicated zigzag
maneuvers to reach our destination. If, how-
ever, the wind occasionally changes direction, a
strategic use of the sails allows us to travel more
directly to our destination.
The stark drop in control trajectory lengths

observed here helps us resolve a fundamental
conundrum about the inner workings of real
systems. In real systems (particularly in sub-
cellular networks), only a small number of “sen-
sory” nodes are generally available for direct
manipulation; however, the use of fewer driver
nodes can drastically increase the length of the
control trajectories (23), meaning that the nodes
will have to take up extreme state values as the
system converges to the desired final state. Tem-
porality unlocks a mechanism through which
typically underactuated natural systems can
smoothly glide between required states—e.g., dif-
ferent stages of the cell cycle—without the need
to pass through highly extreme states that might
be potentially destructive to the system as a whole.
That is, we can drive these sytems to their desired
final state without drastically altering the state
variables of the individual nodes. This could be
particularly important in subcellular networks,
where large changes in the concentrations of
individual molecules may be toxic for a cell, or
in technological systems, where the individual
components must operate within their design
specifications.
Our results demonstrate that temporality has

profound dynamical consequences, fundamen-
tally improving our ability to control real net-
works. This is consistent with previous findings
that nonlinear dynamics, in this case induced
by temporality, can be an asset rather than an
obstacle to control (30). Beyond control, the mea-
sures introduced here offer a general glimpse into

the dynamical flexibility of temporal networks.
Indeed, these networks that exhibit a rapid growth
of their controllable space (small St), and with
concomitantly low control costs, represent dy-
namical “Swiss army knives,” capable of display-
ing a wide range of behaviors with a relatively
small number of network links. Thus, our find-
ings open the door to the design of networks
that are adaptive to changing environments while
using the same set of underlying nodes. This in-
sight may lead to new, robust cyber networks,
adaptive “smart” infrastructures, and new strat-
egies for intervening in natural systems that
capitalize on the best parts of each snapshot to
obtain “the best of all worlds.”
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